

Progress in simulating scrape-off layer plasma dynamics with STORM

F. Riva, D. Hoare, F. Militello, S. Newton, T. Nicholas, J.T. Omotani, D. Schwörer, N.R. Walkden, and B.D. Dudson

The scrape-off layer (SOL) region

STORM: the workhorse of our projects UK Atomic Energy Authority https://github.com/boutproject/STORM Present **Future Past Past** The STORM isothermal model The STORM thermal model Verification and Validation validation Comparison with 2D simulations What's next? Effects of filaments' amplitude Plasma turbulence April 2013

Plasma properties in the SOL

- Large fluctuations
- Fairly cold $T \lesssim 100 \, \mathrm{eV}$
- Losses at the sheath
- Low frequencies $\omega \ll \Omega_{ci}$

[Walkden et al., NME (2017)]

- High collisionality $\nu^* \gg 1$ —— Braginskii equations
- Slow timescales, $\rho_s \ll L_{\perp} \longrightarrow$ Drift reduction

$$\mathbf{v}_i \approx U\mathbf{b} + \mathbf{v}_{E \times B} + \frac{\mathbf{b}}{\omega_{ci}} \times \frac{d}{dt} \mathbf{v}_{E \times B}$$

- Slab geometry
 — Magnetic curvature and gradients added artificially
- Isothermal electrons \longrightarrow T=1
- Boussinesq approximation $\longrightarrow \nabla \cdot \left(n \frac{d\nabla_{\perp} \phi}{dt} \right) \approx n \frac{d\nabla_{\perp}^2 \phi}{dt}$
- Electrostatic $\mathbf{E} = -\nabla \phi$

Continuity equation and compression

$$E \times B$$
 compression

Plasma sources

Continuity equation and compression
$$\frac{\partial n}{\partial t} = \underbrace{-\mathbf{v}_{E\times B}\cdot\nabla n}_{E\times B} - \underbrace{\nabla n}_{\parallel}(nV) + g\left(\frac{\partial n}{\partial z} - n\frac{\partial \phi}{\partial z}\right) + \underbrace{\nabla\cdot(\mu_n\nabla n)}_{\text{Classical and}} + \underbrace{S_n}_{\parallel}(nV) + \underbrace{S_n}_{\parallel$$

 $\nabla \cdot \mathbf{J} = 0$

 $E \times B$ advection Diamagnetic advection and compression

Classical and neoclassical diffusion

$$\frac{\partial \Omega}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla \Omega - U \partial_{\parallel} \Omega + \frac{1}{n} \nabla_{\parallel} \left[n(U - V) \right] + \frac{g}{n} \frac{\partial n}{\partial z} + \nabla \cdot (\mu_{\Omega} \nabla \Omega)$$

Ohm's law

$$\frac{\partial V}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla V - V \partial_{\parallel} V + \frac{m_i}{m_e} \left[\partial_{\parallel} \phi + \nu_{\parallel} (U - V) - \frac{1}{n} \partial_{\parallel} n \right] - V \frac{S_n}{n}$$

Parallel ion momentum equation

$$\frac{\partial U}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla U - U \partial_{\parallel} U - \partial_{\parallel} \phi - \nu_{\parallel} (U - V) - U \frac{S_n}{n}$$

Poisson's equation

$$\Omega = \nabla^2 \phi$$

Bohm-Chodura boundary conditions

$$U|_{\text{target}} \ge \pm 1, \ V|_{\text{target}} = \pm \exp(\phi_{\text{wall}} - \phi)$$

The STORM module of BOUT++

- Arakawa scheme for $E \times B$ terms
- U and V staggered in y
- Upwind schemes for parallel advection terms
- Central finite difference schemes for other terms

Code verification, order-of-accuracy test

Method of manufactured solutions [Roache et al., AIAA J. (1984)]

- Choose arbitrary function *g*
- Define S = M(g)
- 3) Solve $M_h(g_h) S = 0$

h

The scrape-off layer (SOL) region

Scrape-off layer

Roles of the SOL

Heat exhaust

What are the heat and particle loads on vessel components?

How to reduce them?

- → Need to understand <u>transport</u> mechanisms in the SOL
 - Filaments generation, motion,...
 - Turbulence dynamics

Validation against TORPEX experiment

TORPEX [Fasoli et al., PoP (2006)]

[Furno et al., PPCF (2011)]

Provide

- Initial condition for simulations (density, ...)
- Observables (radial velocity, ...)

Validation against TORPEX experiment

2D closures

Used in the past to investigate plasma turbulence and filament dynamics [Krasheninnikov et al., JPP(2008)]

Shea

How do they compare to 3D models?

closure

$$k_{\parallel} = 0$$

$$(nU)|_{\text{target}} = \pm n|_{\text{midplane}}$$

$$(nV)|_{\text{target}} = \pm n \exp(\phi_{\text{wall}} - \phi)|_{\text{midplane}}$$

$$U\nabla_{\parallel} = V\nabla_{\parallel} = \frac{1}{L_{\parallel}}$$

2D-3D comparison

Effects of filaments' amplitude

Implemented multigrid within BOUT++ \longrightarrow Relaxed Boussinesq approximation (project coordinated by J.T. Omotani) $\Omega = \nabla \cdot (n \nabla_{\perp} \phi)$

$$\frac{\partial \Omega}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla \Omega - U \partial_{\parallel} \Omega + \nabla_{\parallel} \left[n(U - V) \right] + g \frac{\partial n}{\partial z} + \nabla \cdot (\mu_{\Omega} \nabla \Omega) - \frac{1}{2} [v_{E \times B}^2, n]$$

Inertial regime $\propto \sqrt{A}$

Sheath current regime $\propto \frac{A}{1+\beta A}$

- High collisionality $\nu^* \gg 1$ —— Braginskii equations
- Slow timescales, $\rho_s \ll L_{\perp} \longrightarrow$ Drift reduction

$$\mathbf{v}_i = U\mathbf{b} + \mathbf{v}_{E \times B} + \frac{\mathbf{b}}{\omega_{ci}} \times \frac{d}{dt} \mathbf{v}_{E \times B}$$

- Slab geometry ———— Magnetic curvature and gradients added artificially
- Isothermal electrons \longrightarrow T=1
- Boussinesq approximation
- Electrostatic $\mathbf{E} = -\nabla \phi$

STORM: the workhorse of our projects

https://github.com/boutproject/STORM

April 2013

Thermal electrons

Filaments may carry significant temperature perturbations

- Extension of isothermal model $g \frac{\partial n}{\partial z} o g \frac{\partial (nT)}{\partial z}, \dots$
- Energy equation $\frac{3}{2}n\frac{\partial T}{\partial t} = -\nabla_{\parallel}q_{\parallel} + ...$
- Boundary condition for heat flux

$$Q_{\parallel}|_{\text{target}} = \gamma (nT^{3/2})|_{\text{target}} \qquad \gamma \approx 2 - 0.5 \ln \left(2\pi \frac{m_e}{m_i} \right)$$

$$q_{\parallel} = Q_{\parallel} - \frac{5}{2}nTV - \frac{1}{2}m_e nV^3$$

More details in [Walkden et al., PPCF (2016)]

- High collisionality $\nu^* \gg 1$ ——— Braginskii equations
- Slow timescales, $\rho_s \ll L_{\perp}$ Drift reduction

Slab geon

Did we improve our modeling capabilities?

- Isotherma
- Boussiness approximation
- Electrostatic ———— $\mathbf{E} = -\nabla \phi$

 $\mathbf{v}_{E \times B}$

lients added

Validation against MAST

[Militello et al., PPCF (2016)]

Observable: filament motion

Validation against MAST

STORM: the workhorse of our projects

April 2013

The scrape-off layer (SOL) region

Scrape-off layer

Roles of the SOL

Heat exhaust

What are the heat and particle loads on vessel components?

How to reduce them?

- → Need to understand <u>transport</u> mechanisms in the SOL
 - Filaments (generation, motion,...)
 - -(Turbulence dynamics)

Turbulence in s-α geometry

Evolve plasma equilibrium ⇒ flux driven ⇒ particle and energy sources

Turbulence typically characterized by $k_r L_{eq} \gtrsim 1 \Rightarrow$ global simulations

MAST simulations

- High collisionality $\nu^* \gg 1$ ——— Braginskii equations
- Slow timescales, $\rho_s \ll L_{\perp} \longrightarrow$ Drift reduction

$$\mathbf{v}_i = U\mathbf{b} + \mathbf{v}_{E \times B} + \frac{\mathbf{b}}{\omega_{ci}} \times \frac{d}{dt} \mathbf{v}_{E \times B}$$

- Slab geometry
- Isethermal electrons
- Boussinesy approximation
- Electrostatic \longrightarrow $\mathbf{E} = -\nabla \phi$

Other activities

- Filaments
 - Electromagnetic effects [Hoare *et al.*, in preparation]
 - Filament separation at the separatrix
 - Magnetic shear effects
 - Neutrals (diffusive model)
- Turbulence
 - Divertor leg [Walkden et al., NME (submitted)]
 - 2D/3D comparison
 - Validation against MAST

- High collisionality $\nu^* \gg 1$ —— Braginskii equations
- Slow timescales, $\rho_s \ll L_{\perp} \longrightarrow$ Drift reduction

$$\mathbf{v}_i = U\mathbf{b} + \mathbf{v}_{E \times B} + \frac{\mathbf{b}}{\omega_{ci}} \times \frac{d}{dt} \mathbf{v}_{E \times B}$$

- Slab geometry
- Isethermal electrons
- Boussinesq appreximation
- Electrostatic

STORM: the workhorse of our projects

https://github.com/boutproject/STORM

- The STORM isothermal model
- Verification and validation
- Comparison with 2D simulations
- Effects of filaments' amplitude

Validation

• What's next?

Future

Plasma turbulence

April 2013

Top priorities for future development

Include

- thermal ions
- kinetic neutrals
- alternative magnetic configurations
- nonlocal effects

to understand

- first wall erosion
- heat flux at the target.

Numerical necessities:

- Compatibility between shifted grids and shifted metric
- 3D multigrid solver (PETSc)

Image created with CHERAB by Dr. M. Carr

STORM in journal articles

https://github.com/boutproject/STORM

- [Easy et al., "Three dimensional simulations of plasma filaments in the scrape off layer: A comparison with models of reduced dimensionality", PoP (2014)]
- [Omotani et al., "The effects of shape and amplitude on the velocity of scrape-off layer filaments", PPCF (2015)]
- [Riva et al., "Blob dynamics in the TORPEX experiment: a multi-code validation", PPCF (2016)]
- [Easy et al., "Investigation of the effect of resistivity on scrape off layer filaments using three-dimensional simulations", PoP (2016)]
- [Walkden et al., "Dynamics of 3D isolated thermal filaments", PPCF (2016)]
- [Militello et al., "Multi-code analysis of scrape-off layer filament dynamics in MAST", PPCF (2016)]
- [Militello et al., "On the interaction of scrape off layer filaments", PPCF (2017)]
- [Schwörer et al., "Influence of plasma background including neutrals on scrape-off layer filaments using 3D simulations", NME (2017)]

• High collisionality $\nu^* \gg 1$ ——— Braginskii equations

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}_{\alpha}) = 0, \dots$$

• Slow timescales, $\rho_s \ll L_\perp$ — Drift reduction

$$\mathbf{v}_i = U\mathbf{b} + \mathbf{v}_{E \times B} + \frac{\mathbf{b}}{\omega_{ci}} \times \frac{d}{dt} \mathbf{v}_{E \times B}$$
 $\mathbf{v}_e = V\mathbf{b} + \mathbf{v}_{E \times B} + \mathbf{v}_{de}$

Slab geometry — Magnetic curvature and gradients added artificially

$$\left(\nabla \times \frac{\mathbf{b}}{B}\right) \cdot \nabla A \approx g \frac{\partial A}{\partial z} \qquad g = 2 \frac{\rho_{s0}}{R}$$

- Isothermal electrons \longrightarrow T=1
- Boussinesq approximation $\longrightarrow \nabla \cdot \left(n \frac{d\nabla_{\perp} \phi}{dt} \right) \approx n \frac{d\nabla_{\perp}^2 \phi}{dt}$
- Electrostatic \longrightarrow $\mathbf{E} = -\nabla \phi$

Continuity equation

$$\frac{\partial n}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla n - \nabla_{\parallel}(nV) + g\left(\frac{\partial n}{\partial z} - n\frac{\partial \phi}{\partial z}\right) + \nabla \cdot (\mu_n \nabla n) + S_n$$

 $\nabla \cdot (n\mathbf{v}_{de}) \quad n\nabla \cdot \mathbf{v}_{E \times B}$

•
$$\nabla \cdot \mathbf{J} = 0$$

$$\frac{\partial \Omega}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla \Omega - U \partial_{\parallel} \Omega + \frac{1}{n} \nabla_{\parallel} [n(U - V)] + \frac{g}{n} \frac{\partial n}{\partial z} + \nabla \cdot (\mu_{\Omega} \nabla \Omega)$$

Ohm's law

$$\frac{\partial V}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla V - V \partial_{\parallel} V + \frac{m_i}{m_e} \left[\partial_{\parallel} \phi + \nu_{\parallel} (U - V) - \frac{1}{n} \partial_{\parallel} n \right] - V \frac{S_n}{n}$$

Parallel ion momentum equation

$$\frac{\partial U}{\partial t} = -\mathbf{v}_{E \times B} \cdot \nabla U - U \partial_{\parallel} U - \partial_{\parallel} \phi - \nu_{\parallel} (U - V) - U \frac{S_n}{n}$$

Poisson's equation

$$\Omega = \nabla^2 \phi$$

Magnetic pre-sheath entrance

Drift approximation breaks at magnetic pre-sheath entrance

Verification of the parallel dynamics

The shock tube problem

 $N_z = 16$

 $N_z = 256$ - $N_z = 512$ - Theory

 Overall good agreement for high resolution

Code verification, order-of-accuracy test

Our model: M(f) = 0, f unknown

Solve
$$M_h(f_h) = 0$$
 for f_h , but $\epsilon_h = ||f - f_h|| = ?$

15
$$\epsilon_h = ||J - J_h|| = n^* + O(n^*)$$
 ?

Method of manufactured solutions [Roache et al., AIAA J. (1984), Riva et al., PoP (2014)]

- Choose arbitrary function g, compute S = M(g)
- Solve $M_h(g_h) S = 0 \Rightarrow \epsilon_h = \|g g_h\|$

Validation against TORPEX experiment

[Riva et al., PPCF (2016)]

Effects of filaments' perpendicular size

[Easy et al., PoP (2014)]

Effects of filaments' parallel extent

- Connected filaments display faster radial propagation
- Filaments spin if not connected with the sheath

[Easy et al., PoP (2014)]

x

Effects of filaments' shape

Effects of plasma resistivity

 ν_{\parallel} disconnects filaments from the target, shifting the transition between sheath current and inertial regime

Two-region model [Myra et al., PoP (2006)]

Thermal effects

If
$$\frac{\delta T}{T_{bg}}\gg \frac{\delta n}{n_{bg}}$$
:

- Increased propagation in binormal direction
- Reduced propagation in radial direction
- Faster parallel pressure losses

[Walkden et al., PPCF (2016)]

Filament interaction

⇒ like independent filaments

[Militello et al., PPCF (2017)]

Effects of plasma background

- Radial velocity decreases by increasing n_0
- Radial velocity increases by increasing T_0 [Schwörer *et al.*, NME (2017)]

Electromagnetic effects

Do filaments affect field lines?

Do filaments behave differently when including electromagnetic effects?

Filament separation

Understand how filaments cross the separatrix

Turbulent mixing in divertor legs

Understand how turbulence spreads heat and particles in the divertor leg

[Walkden et al., PSI (2018)]

Simulating plasma turbulence

Source of particles and heat

x

Explored different

Evolve plasma equilibrium dariyuxondritivems

$$\frac{\partial n}{\partial t} = f_n(t, n, T, \dots) \to \frac{\partial \log(n)}{\partial t} = \frac{f_n(t, n, T, \dots)}{n}, \frac{\partial T}{\partial t} = f_T(n, t) \to \frac{\partial \log(T)}{\partial t} = \frac{f_T(t, n, T, \dots)}{T}$$

